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ABSTRACT
Emotion regulation is a vital cognitive process linked to
mental well-being, yet traditional interventions often lack
real-time responsiveness. Advances in neurofeedback and
immersive technologies, such as EEG-based emotion detec-
tion and Extended Reality (XR), enable more dynamic sup-
port. However, many existing systems rely on static feedback
or are confined to Virtual Reality, with limited exploration
in Mixed Reality (MR). This research presents a real-time
neuroadaptive system that integrates EEG-based emotion
classification with MR interventions to support emotional
self-regulation. We collect raw EEG data using a wireless
7-electrode X.on headset, streamed in real time into our clas-
sification pipeline. The data is processed by the ATCNet
model, trained on 12-second EEG segments at 250 Hz with
50% overlap. Using the SEED-V dataset, we restructured five
original emotion classes into a binary valence-based task,
positive vs. negative, achieving 80% precision. This predic-
tion drives feedback in the MR environment, where users
interact with an emotionally intelligent avatar through ex-
plicit (e.g., avatar interactions/behaviour) and tactile (e.g.,
haptic feedback via the bHaptics TactGlove) modulation. To-
gether, these components create a responsive, immersive
framework for affective computing and emotion regulation.
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1 INTRODUCTION
Emotion regulation is a fundamental cognitive process that
influences individual well-being, interpersonal relationships,
and societal dynamics. Ineffective emotion regulation has
been implicated in various psychological disorders, including
mood and anxiety disorders, emphasizing the critical need
for innovative and accessible intervention strategies [15].
Therefore, it is vital for people to be aware of their emo-
tional state and manage the volatility of extreme emotional
responses.
Traditional approaches to emotion regulation, such as

cognitive-behavioral therapy (CBT), mindfulness practices,
and pharmacological treatments, have demonstrated effec-
tiveness across diverse populations [16]. However, these
methods often require substantial time, consistency, and
access to trained professionals, posing challenges to their
widespread adoption and scalability. As a result, there is in-
creasing interest in technology-enhanced solutions that can
complement and enhance these traditional interventions [4].

Among emerging technologies, EEG-based neurofeedback
has attracted attention for its ability to provide real-time feed-
back on brain activity, enabling individuals to moderate their
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responses associated with emotion regulation [17]. Despite
its promise, conventional neurofeedback systems are typi-
cally limited by their reliance on static and non-interactive
visual or auditory stimuli. These limitations reduce user en-
gagement and fail to replicate the dynamic complexity of
real-world emotional experiences [2].

Extended Reality (XR) is another growing cluster of tech-
nologies which encapsulates Virtual Reality (VR), Mixed
Reality (MR), and Augmented Reality (AR). XR offers an
extremely interactive environment, seamlessly blending vir-
tual and real-world elements together. Within the context of
emotion regulation, there are a myriad of studies which test
emotion regulation in VR, however very few in the other
realms such as MR.

Unlike VRwhich transports the user into an entirely differ-
ent world, MR integrates virtual digital elements/objects into
real-world environments, offering a transformative platform
for advancing emotion regulation interventions. MR’s adapt-
ability and capacity to create immersive, personalized envi-
ronments have demonstrated success in applications such
as stress reduction and exposure therapy [12]. Therefore, by
leveraging MR’s unique capabilities, it becomes possible to
simulate contextually rich scenarios tailored to individual
needs, thereby enhancing user engagement and efficacy in
emotion regulation training. Furthermore, the user is present
within their own real-world environment, allowing it to re-
main noninvasive in daily routine life.
Physiological signals provide a window into emotional

states, offering critical insights into their underlying neural
mechanisms. While techniques such as heart rate variabil-
ity and galvanic skin response have been widely employed,
EEG stands out for its high temporal resolution and ability
to capture intricate patterns of brain activity [18]. These
characteristics make EEG particularly suitable for emotion
regulation research, as it supports real-time monitoring and
adaptive feedback.
The development of a neuroadaptive system that inte-

grates EEG-based feedback with sophisticated MR interfaces
presents several challenges. Such a system must interpret
complex EEG signals accurately while delivering contex-
tually appropriate, personalized feedback in an immersive
environment. Furthermore, it must adapt to individual emo-
tional patterns to ensure its efficacy and relevance [3].
This research aims to bridge these challenges by devel-

oping an EEG-based neuroadaptive system that leverages
deep learning and MR to detect emotional signals and fa-
cilitate emotion regulation. By integrating real-time EEG
neurofeedback with interactive, user-specific environments,
the proposed system aspires to create a more effective and
engaging approach tomental health interventions. This work
represents a step toward the broader goal of advancing in-
terdisciplinary solutions at the intersection of neuroscience,

machine learning, and immersive technologies to improve
affective health outcomes.

2 RELATEDWORK
2.1 Emotion Regulation
The integration of EEG-based neurofeedback with mixed re-
ality for emotion regulation is a burgeoning field that bridges
neuroscience, psychology, and immersive technologies. This
section reviews pivotal studies that shape our research ap-
proach and methodology.

Neurofeedback and Emotion Regulation: Extensive
research has shown that EEG-based neurofeedback can be
effective for emotion regulation. Li et al. (2023) demonstrated
that neurofeedback training could enhance emotion regu-
lation by employing decoded EEG feedback for cognitive
reappraisal tasks [8]. Similarly, Huang et al. (2023) provided
evidence that neurofeedback, through a brain-computer in-
terface, could significantly improve the ability to regulate
emotions by providing real-time EEG feedback, enhancing
individual strategies for emotional control [6].

ExtendedReality inPsychological Interventions:The
use of XR, including virtual reality (VR), has been explored
for psychological interventions. Liang et al. (2023) discussed
the effectiveness of an EEG-based VR system that adapts the
virtual scenes dynamically based on the user’s emotional
state, thereby aiding in emotion regulation [9].

2.2 Mixed Reality
Neuroadaptive systems are a group of adaptive systems that
employ EEG signals to generate personalized experiences. It
is based on the cybernetic theory, which involves steps such
as physiological data acquisition and processing, transfor-
mation in system response, and shaping the expected psy-
chophysiological response. This system helps users achieve
optimal performance, immersion, and engagement. It has
potential applications in the healthcare industry to deliver
customized therapies suited to patient’s psychophysiological
conditions. It also aids in technology-based decision-making
to assist cognitive, information processing, motivation, and
metacognition abilities [3]. ARCADIA is a Mixed Reality
platform designed to enhance emotional regulation and self-
compassion through gamified therapeutic activities using a
virtual agent [14]. This project addresses the Therapeutic Ap-
plication of Mixed Reality Gamification for user motivation
and Personalization through Biofeedback. CAEVR (Context-
Aware Empathy in Virtual Reality) explores the integration
of biosignals-driven emotion recognition into virtual reality
experience and explores the use of empathic virtual agent in
modulating positive emotions.[5]
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2.3 Deep Learning
Deep Learning has become a cornerstone in emotion recogni-
tion research, offering advanced methods to analyze complex
physiological signals such as EEG. By leveraging its ability
to automatically extract and learn hierarchical features, deep
learning has outperformed traditional machine learning ap-
proaches in tasks that require the identification of nuanced
patterns.
Convolutional Neural Networks (CNNs) are widely used

for EEG signal analysis due to their strength in capturing
spatial features. CNN-based models have demonstrated sig-
nificant success in emotion classification tasks by extracting
spatial dependencies between EEG channels. For example,
models like EEGNet have effectively utilized lightweight
convolutional architectures to analyze spatial interactions
in brain signals, providing interpretable features relevant to
emotion recognition [7].
In recent years, transformers have emerged as a promis-

ing alternative for processing sequential data. Initially de-
veloped for natural language processing, transformers use
self-attention mechanisms to model long-range dependen-
cies, making them particularly suitable for tasks requiring the
integration of both spatial and temporal information. Trans-
formers have been adapted for EEG-based emotion recogni-
tion by combining spatial information across electrodes with
temporal dynamics, yielding state-of-the-art performance in
various classification tasks [10].

ATCNet, a physics-informed transformer-based architec-
ture originally designed for motor imagery classification,
has demonstrated success in capturing spatial-temporal de-
pendencies in EEG signals. Although its primary applica-
tion was not in emotion recognition, the core idea behind
ATCNet-using attention mechanisms to prioritize relevant
features-aligns well with the challenges of classifying emo-
tional states. This ability to dynamically focus on important
spatial and temporal features made it a compelling choice for
our research. By adapting ATCNet for emotion recognition,
we aim to leverage its robust feature extraction capabilities
to classify five distinct emotional states-happiness, sadness,
neutral, anger, and disgust-using the SEED-V dataset [1].
The adoption of deep learning models like CNNs, trans-

formers, and ATCNet has opened new frontiers in emotion
recognition by addressing key challenges such as the com-
plexity of EEG data and the variability in emotional patterns.
This research builds upon these advancements by employing
a modified version of ATCNet to classify emotional states
within a Mixed Reality (MR) environment, providing neu-
roadaptive feedback for emotion regulation and bridging
the gap between advanced computational methods and real-
world psychological health applications.

3 PIPELINE ARCHITECTURE
The proposed framework that will be utilized in this study
is a closed-loop feedback system which consists of 4 main
modules: EEG data collection, Data Processing, Deep Learn-
ing Model, and an MR Environment as shown in Figure 1. In
this section, we discuss each of these modules in more detail
and how they contribute to the overall functionality of the
system.

Figure 1: Pipeline for real-time EEG-based emotion
classification and MR adaptive environment.

The interface establishes a seamless connection between
EEG data acquisition, the emotion classification backend, and
the Unity-basedMixed Reality (MR) environment. It operates
on a modular TCP/IP client-server architecture, enabling
real-time communication across system components. A web-
based dashboard (Figure 2) was developed to monitor data
streams, classification outputs, and system status in real time.

Figure 2: Web interface for monitoring and control-
ling the emotion detection system.

The data flow is managed through a modular architecture:
(1) The backend handles EEG acquisition and preprocess-

ing either in live mode (LSL) using a wireless X.on
headset or a virtual emulator (testing).

(2) The trained model then classifies emotion outputs
which are streamed through the TCP server (port 5005),
to the MR client.
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(3) The Unity MR application runs a TCP client that re-
ceives predictions in real time, triggering correspond-
ing visual and haptic feedback.

This modular, bidirectional setup allows the MR environ-
ment to adapt dynamically to the user’s emotional state, with
an end-to-end latency of approximately 6s.

4 DEEP LEARNING METHODOLOGY
4.1 Datasets
The EEG data is gathered from the SEED-V dataset [11]. This
dataset contains raw EEG from 16 participants where each
participant watched 45 different short movies in total (15
movies/session for 3 sessions). Each movie was aimed to
induce a particular emotion from a class of five different
emotions: happiness, sadness, neutral, fear, disgust.

4.2 Data Engineering and Pre-processing
The EEG data is preprocessed to ensure optimal signal quality
for emotion classification. A notch filter at 50 Hz is applied
to remove power line interference, which typically occurs
at this frequency in many regions. A bandpass filter with a
range of 0.5 to 70 Hz is used to retain relevant brainwave
frequencies, removing slow drifts below 0.5 Hz and high-
frequency noise above 70 Hz, both of which are unlikely to
contain meaningful emotional information. The data is then
resampled to 250 Hz to ensure consistent temporal resolu-
tion for further analysis as well as to match the streaming
rate of the 7 electrode X.on device. Lastly, participants in the
SEED-V dataset rated each video clip on a scale from 0 to
5, indicating how well the intended emotion was induced.
To ensure higher label reliability, we excluded samples with
ratings of 2 or below. This filtering step retained 89.72%
of the original dataset, preserving a substantial amount of
usable data while improving label quality. To assess the im-
pact of this pre-processing decision, we evaluated one of
our benchmark models (ATCNet) on both filtered and un-
filtered datasets as shown in Figure 3. This assessment was
done on the 5 output classes from the SEED-V dataset. The
filtered configuration consistently achieved higher average
validation accuracy, demonstrating the effectiveness of this
quality-based filtering approach.

In addition, we restructured the emotion classes into two
valence-based categories: positive and negative. This deci-
sion was made to simplify real-time classification and reduce
the risk of misclassification in a deployed system. We fo-
cused specifically on the valence dimension-ranging from
unpleasant to pleasant-by grouping all negative emotions
(disgust, fear, sadness) into one class, and combining neutral
and positive emotions into the other. To ensure class balance,
an equal number of samples were drawn from each group
during training.

Figure 3: Average Accuracy of ATCNet on SEED-V (5
emotion classes) before and after filtering data.

For model input, overlapping data windows were created
to help the network capture temporal dynamics across con-
secutive EEG segments. Finally, the preprocessed data was
formatted into .h5 datasets for efficient training and stor-
age, enabling high-throughput data handling throughout the
pipeline.

4.3 Model Selection and Design
We evaluated multiple deep learning architectures for EEG-
based emotion classification, including GRUs, LSTMs, CNN
variants, and transformer-based models. Among them, ATC-
Net was selected for its hybrid CNN-transformer architec-
ture, which effectively captures both spatial and temporal
dependencies in EEG signals. Although initially designed for
motor imagery classification, ATCNet proved highly adapt-
able to affective computing tasks.

Figure 4: ATCNet architecture consisting of convolu-
tional, attention, and temporal convolutional blocks
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Convolutional (CV)Block: The convolutional block serves
as the initial stage of spatiotemporal encoding. It applies
three successive convolutional operations: a temporal con-
volution that captures local time-domain signal patterns;
a depthwise spatial convolution that learns spatial depen-
dencies across EEG channels; and a final temporal convolu-
tion for further temporal abstraction. The use of standard
2D convolutions here enables richer feature representations
and pooling layers interspersed between these convolutions
reduce the temporal resolution. The aim is to effectively
transform raw EEG signals into a high-dimensional tempo-
ral sequence of feature vectors capturing patterns across
time and space. These representations serve as the input for
the subsequent attention module.

Figure 5: Convolutional block for spatial-temporal
feature encoding

Attention (AT) Block: The attention block uses multi-
head self-attention (MSA) to dynamically weigh segments of
the temporal sequence based on contextual relevance. Each
head computes scaled dot-product attention independently,
enabling the model to capture diverse temporal dependen-
cies in parallel. The outputs are aggregated into a refined
feature representation. Residual connections and layer nor-
malization support stable training and faster convergence.
This block helps the model focus on emotionally salient EEG
regions without relying on fixed receptive fields.

Figure 6: Multi-head self-attention block

Temporal Convolutional (TC) Block: The temporal
convolutional block leverages dilated causal convolutions
within stacked residual blocks to model long-range temporal
dependencies. Causal convolutions enforce temporal order,
ensuring that predictions at a given time step do not leak fu-
ture information-crucial for real-time applications. Dilation
exponentially increases the receptive field, enabling the net-
work to capture patterns over extended durations without
increasing depth. Residual connections allow stable gradi-
ent flow and maintain representational fidelity across layers.
With a receptive field calibrated to handle fixed-length in-
put windows, the TC block is particularly well-suited for
decoding slow-evolving affective states in EEG data.

Figure 7: Temporal convolution block with residuals

The concatenated outputs from all windows are passed
through a fully connected layer followed by a SoftMax clas-
sifier for final emotion prediction.

To validate model performance, we trained each architec-
ture on the SEED-V dataset for 5-class emotion classification.
As shown in Figure 8, ATCNet achieved the highest average
validation accuracy (46.7%), outperforming baseline models
including EEGNet and CNN-LSTM hybrids. This confirms
its strong ability to extract discriminative spatial-temporal
features from EEG signals.

Figure 8: Model comparison based on average valida-
tion accuracy on SEED-V
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4.4 Hyperparameter Optimization
To further optimize ATCNet’s performance, we conducted
extensive tuning of key parameters including learning rate,
batch size, chunk duration, and overlap ratio. Each parameter
was evaluated independently using grid search while holding
other settings constant. The results are visualized in the
following figures.

Figure 9: Validation accuracy across different learning
rates (log scale)

Figure 10: Validation accuracy across different batch
sizes

Figure 11: Validation accuracy across varying EEG
chunk durations

Figure 12: Validation accuracy across different overlap
ratios

Based on these hyperparameter optimizations, here are
the optimized values used for our training:

Hyperparameter Selected Value

Chunk Duration 12 seconds
Overlap Ratio 50%
Batch Size 256
Learning Rate 1 × 10−2

Table 1: Optimized hyperparameter configuration

We selected 12-second chunks as they yielded the highest
accuracy and align with the temporal nature of emotional
states, which typically unfold over longer time windows.
While higher overlap ratios showed slight improvements
in accuracy, they significantly increased dataset size and
training time. Thus, a 50% overlap was chosen as the most
resource-efficient option with minimal accuracy trade-off.
The learning rate and batch size were selected based on
peak performance during validation, offering a stable balance
between convergence speed and generalization.

4.5 Training Setup
All models were implemented using the PyTorch framework
and trained on an NVIDIA RTX 4090 GPU running CUDA
12.6. We adopted a structured training pipeline that included
logging, early stopping, checkpointing, and dynamic learn-
ing rate scheduling.

The dataset was split using a leave-one-subject-out (LOSO)
strategy, where the model was trained on data from 15 out
of the 16 participants in the SEED-V dataset and tested on
the remaining participant. This subject-independent setup
ensures generalization by evaluating the model on entirely
unseen individuals, making it especially suitable for real-time
pipelines where the end users are likely to be individuals the
model has never seen before.
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We used a batch size of 256 and trained models for up
to 200 epochs, evaluating validation every 5 epochs. Early
stopping was applied with a patience of 15 epochs to prevent
overfitting.

Learning Rate Scheduler: A cosine annealing scheduler
was used to progressively decrease the learning rate, allow-
ing for fast convergence during initial epochs and finer ad-
justments later in training. This cyclic approach helps the
model escape local minima and encourages stable conver-
gence (see Figure 13).

Figure 13: Cosine annealing learning rate schedule

Loss Function: Focal LossWe used the focal loss func-
tion to address the class imbalance between positive and
negative emotion samples. Compared to cross-entropy loss,
focal loss down-weights easy examples and focuses more
on hard, misclassified samples, making it well-suited for our
task. The focal loss is defined as:

Lfocal = −𝛼𝑡 (1 − 𝑝𝑡 )𝛾 log(𝑝𝑡 )
where 𝑝𝑡 is the model’s estimated probability for the true

class, 𝛼𝑡 is a weighting factor for class 𝑡 , and 𝛾 is the focus-
ing parameter. We used 𝛾 = 2, and class-specific weights of
[1.2, 0.6] for the negative and positive classes respectively.
This helped the model better distinguish between easily con-
fusable positive chunks and harder negative ones. These
weights were manually optimized through iterative experi-
mentation across several training runs to achieve the best
class-wise performance balance.

Optimizer: The model was trained using the Adam opti-
mizer with an initial learning rate of 1 × 10−2. Loss curves
and validation accuracy were logged and plotted throughout
training. Best model checkpoints were saved automatically
based on validation loss and accuracy.

5 MIXED REALITY METHODOLOGY
After the user’s physiological signals are classified, the re-
sults are sent via a TCP server to the Oculus Quest 3 headset,
triggering a personalized gameplay loop based on the user’s
emotional state. The central interaction involves petting a
virtual animal to regulate its emotional parameters—valence
and arousal. The simulation features an emotionally intel-
ligent pet avatar with occlusion-aware navigation, enabled
through a custom occlusion shader that allows the pet to
initially hide behind real-world objects before emerging into
the user’s field of view. The experience is further enhanced
by a physics-driven animation system that blends the user’s
physical force with the pet’s programmed responses, cre-
ating fluid and lifelike interactions. A gesture recognition
system allows users to raise their palms to beckon the pet,
adding an intuitive and embodied control mechanic. The
pet’s color and facial expression dynamically change based
on the quality and intensity of the petting interaction, of-
fering continuous affective feedback. Tactile sensations are
delivered via the bHaptics TactGlove, deepening immersion
through synchronized physical feedback.

Figure 14: Experimental Setup with EEG headset,
Quest 3 and bHaptics TactGloves

This mixed reality simulation draws on principles from
socially intelligent agents and therapeutic robotics to create
an empathic MR agent capable of adaptive emotional reg-
ulation. The design is inspired by social robots and aligns
with the three key dimensions of realistic mixed reality ex-
periences, as defined by Skarbez: immersion, coherence, and
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(a) Angry avatar (b) Eating avatar

(c) Happy avatar (d) Sad avatar

Figure 15: A 2x2 grid of images

extent of world knowledge [13]. Immersion refers to the
user’s sense of spatial presence; coherence ensures consis-
tency across sensory modalities, enhancing the plausibility
of the experience; and extent of world knowledge integrates
real-world spatial awareness into the MR environment. The
pet agent delivers empathic responses through multimodal
cues—verbal, nonverbal, and tactile—creating a believable
and emotionally engaging interaction loop. Additional cozy-
game interactions, such as collecting coins using a pointing
laser, provide low-stress, high-reward activities that further
promote emotional well-being and user engagement.

6 RESULTS
Our final model, trained using the optimized pipeline and
evaluated under a leave-one-subject-out (LOSO) strategy,
demonstrated strong generalization performance across emo-
tion classes. As shown in Figure 16, the confusion matrix
reveals a relatively balanced distribution of correct predic-
tions, with the model performing particularly well on nega-
tive samples (Precision: 0.854, Recall: 0.790). Positive samples
were slightly more challenging, though still predicted with
reasonable accuracy (F1 Score: 0.749). The macro average F1
score of 0.785 and weighted F1 score of 0.792 indicate overall
consistent performance across both classes.
These results validate the effectiveness of our approach-

combining class-weighted focal loss, preprocessing filters,
and architecture-level optimizations-to improve classifica-
tion in a real-time, subject-independent EEG-based emotion
recognition setting.

Figure 16: Confusion Matrix of the Binary Classifica-
tion Model

Class Precision Recall F1 Score

Negative 0.854 0.790 0.821
Positive 0.710 0.793 0.749

Macro Avg 0.782 0.791 0.785
Weighted Avg 0.797 0.791 0.792

Table 2: Precision, Recall, and F1 Scores across emo-
tion classes based on the final model’s predictions

7 DISCUSSION
Our implementation of the ATCNet model for EEG-based
emotion classification achieved a weighted F1-score of 0.792
for binary valence classification. This section discusses key
findings and potential areas for improvement in our method-
ology.

7.1 Methodological Strengths
The systematic parameter optimization approach proved
highly effective, particularly our exploration of different
window sizes and overlap percentages. While our testing
indicated that window sizes of 12-14s and high overlap per-
centages (80-90%) showed promising performance, we ul-
timately selected a 12s window size and 50% overlap for
our final model implementation to balance computational
efficiency with classification accuracy. This trade-off was
necessary to ensure near real-time processing required for
seamless integration with mixed reality environments.
Data filtering significantly improved classification per-

formance, demonstrating the critical importance of prepro-
cessing in EEG analysis. As shown in Figure 3, filtered data
consistently outperformed unfiltered data by approximately



Real-time EEG-based Neuroadaptive System for Emotion Regulation using Deep Learning in Mixed Reality EnvironmentsCapstone Project 2, Spring 2025, Abu Dhabi, UAE

2.5% across our experiments, helping to reduce noise and
enhance signal quality.
The confusion matrix indicates that the model performs

well on the binary classification task, demonstrating strong
predictive balance between negative and positive emotional
states. Without loss weighting, the model consistently over-
predicted positive emotions—likely due to their higher signal
clarity and prevalence in the dataset. By introducing class-
specific weights [1.2, 0.6] within the focal loss function, we
were able to correct this bias, encouraging the model to focus
more on the harder-to-classify negative samples. This adjust-
ment significantly improved class-level balance, as reflected
in the nearly symmetric precision and recall scores across
both classes.

7.2 Limitations and Future Improvements
Despite the promising results, several limitations warrant
consideration in future work:

• DatasetConstraints:The SEED-V dataset, while valu-
able for our initial implementation, has inherent lim-
itations in ecological validity and generalizability. It
was collected in controlled laboratory conditions with
16 participants using a high-density EEG system (62
electrodes), whereas our deployment target is the X.on
7-electrode EEG headset in less controlled environ-
ments. Future iterations should incorporate more re-
fined datasets such as DEAP, which offers multimodal
data and greater diversity in emotion elicitation paradigms,
or collect custom data using the actual deployment
hardware.

• EmotionClassificationComplexity:While our cur-
rent binary valence classification (positive/negative)
provides a functional foundation, expanding to a more
nuancedmulti-class emotion recognition systemwould
significantly enhance the system’s capabilities. Future
work should aim to classify a broader spectrum of
emotional states (e.g., the five discrete emotions from
SEED-V: happiness, sadness, fear, disgust, and neutral)
and adapt the model architecture to handle this in-
creased classification complexity while maintaining
real-time performance.

• CustomModelArchitecture:AlthoughATCNet per-
formed well in our experiments, developing a custom
architecture specifically optimized for our use case
could yield improved performance. A tailored model
could be designed to be more lightweight for on-device
processing on the MR headset, and specifically opti-
mized for the limited spatial resolution of 7-channel
EEG data, potentially improving both computational
efficiency and classification accuracy.

• Empirical Validation: The current system requires
comprehensive validation with test subjects to objec-
tively assess its effectiveness in emotion regulation.
Future work should include randomized controlled
trials measuring pre-post intervention changes using
established emotion regulation assessment tools (e.g.,
Difficulties in Emotion Regulation Scale), alongside
physiological measures (HRV, GSR) and subjective ex-
perience reports. Such studies would provide crucial
insights into real-world efficacy beyond classification
accuracy.

• Enhanced MR Interactions: The current mixed re-
ality interaction paradigms could be expanded to cre-
ate more engaging and effective emotion regulation
experiences. This could include more sophisticated en-
vironmental adaptations based on emotional intensity,
personalized feedback mechanisms that evolve over
multiple sessions, and integration with other biofeed-
back modalities such as breathing guidance to create
a more holistic approach to emotion regulation.

8 CONCLUSION
This project demonstrates the feasibility of integrating EEG-
based emotion recognition with mixed reality environments
for emotion regulation training. By achieving an F1-score of
0.792 for binary valence classification while maintaining real-
time processing capabilities (approximately 6s latency), we
have established a foundation for neuroadaptive systems that
respond dynamically to users’ emotional states. The success-
ful integration of deep learning, EEG signal processing, and
mixed reality technologies represents a promising approach
for applications in emotional intelligence training and men-
tal wellbeing interventions. Future work focusing on model
optimization for specific hardware constraints, real-world
validation studies, enhanced interaction paradigms, and ex-
pansion to multi-class emotion recognition will be crucial
for advancing this technology toward practical applications.
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